Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 330 (2005) 101-116

www.elsevier.com/locate/tcs

Tissue P systems with channel states
Rudolf Freund, Gheorghe Rur?¢*, Mario J. Pérez-Jiménéz

8Faculty of Informatics, Vienna University of Technology, Favoritenstr. 9-11, A-1040 Vienna, Austria
bnstitute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 8ydromania
CResearch Group on Natural Computing, Department of Computer Science and Avrtificial Intelligence, University
of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract

We consider tissue-like P systems with states associated with the links (we calyhepses
between cells, controlling the passage of objects across the links. We investigate the computing power
of such devices for the case of using—in a sequential manner—antiport rules of small weights. Systems
with two cells are proved to be universal when having arbitrarily many states and minimal antiport
rules, or one state and antiport rules of weight two. Also the systems with arbitrarily many cells, three
states, and minimal antiport rules are universal. In contrast, the systems with one cell and any number
of states and rules of any weight only compute Parikh sets of matrix languages (generated by matrix
grammars without appearance checking); characterizations of Parikh images of matrix languages are
obtained for such one-cell systems with antiport rules of a reduced weight.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Matrix grammars; Membrane computing; P systems; States; Turing computability

1. Introduction

In the area of membrane computing area there are two main classes of systems: cell-
like and tissue-like P systems. The former type is inspired from cell organization (and has
membranes hierarchically arranged, hence, corresponding to a tree), the latter one mimics
the “collaboration” of cells from tissues of various kinds (hence, corresponds to membranes
placed in the nodes of an arbitrary graph). Actually, there are two sub-classes of tissue-like
P systems, one using symport/antiport rules for communication between cells, and the other

* Corresponding author.
E-mail addressesudi@emcc.afR. Freund)gpaun@us.es. Paun),marper@us.e@.J. Pérez-Jiménez).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.013

http://www.elsevier.com/locate/tcs
mailto:rudi@emcc.at
mailto:gpaun@us.es
mailto:marper@us.es

102 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

one, closer to neural net organization, having states associated with the cells, for controlling
multiset rewriting rules which make evolve the multisets of objects in the cells.

In the present paper, we take a different perspective, somewhat mixing the two sub-cases
of tissue-like systems: we associate states to the links between cells, and use these states in
order to control the communication between cells; in its turn, the communication is done
by means of symport/antiport rules. Between two cells at most one link is established (also
calledsynapsg Because the states can be changed by using rules, a conflict can appear
when two rules used on the same link ask for changing the state to two different new states.
That is why we use the rules in a sequential manner: on each possible channel between two
cells we use only one rule. At the level of the whole net of cells, the evolution is parallel
(synchronous): we have to use a rule on each synapse where a rule can be used.

Considering a sequential use of rules on each link between cells is also challenging from
a mathematical point of view; the maximal parallelism, usual in membrane computing,
combined with the definition of successful computations as the halting ones, is a powerful
tool in “programming” the work of P systems of various types (in particular, it provides a
way to implement “appearance checking”, as in regulated context-free grammars). In our
framework, the expected loss in power induced by the sequential use of rules is compensated
by the use of states.

The issue of considering states associated with the communication channels between
membranes is part of a more general research topic, that of considering tissue-like P systems
with a dynamic structure (dynamically changing membranes and/or links between them).
Our approach can be considered as a partial answer to this general problem, as the states
control the passage of objects across the links, selectively permitting the objects to pass,
possibly completely inhibiting certain channels.

The power of systems as suggested above, with antiport rules of small weights used
sequentially are shown to be Turing complete in the case of two cells (even with minimal
antiportrules, if “enough” states are used) and to characterize the Parikhimages of languages
generated by matrix grammars without appearance checking in the case of one cell (no matter
how many states and no matter how general the rules are that are used).

The case of the parallel use of rules (in a step we can use simultaneously all rules which
pass from a given state to a unique next state)—as well as other related problems—remain
to be investigated.

2. Tissue-like P systems with channel states

The reader is supposed to be familiar with basic elements of membrane computing, e.g.,
from[12]; rather useful is the comprehensive information that can be found in the web page
http://psystems.disco.unimib.it . For the basic elements of formal language
theory needed in the following, we refer to any monograph in this area, in particylb]to
(we just mention tha¥ * is the free monoid generated by the alphabender the operation
of concatenation and the empty string, denoted,las identity; byREwe denote the family
of recursively enumerable languages, anddfythe family of context-free languages; by
Y1 (L) we denote the Parikh image of the langudge T*, and byPsFLwe denote the
set of Parikh images of languages from a given farhily.

http://psystems.disco.unimib.it

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 103

Tissue-like P systems were introduced10]. Here we deal with the following type of
systems:
A tissue-like P systelfof degreen > 1) with channel statess a construct

II=(0,T,K,wi,...,wn, E,syn, (s j)i, jesynr (R, j)) G, pHesyns 1o)

whereOQ is the alphabet obbjects T C O is the alphabet oferminal objects,K is the
alphabet oftategnot necessarily disjoint @), w1, . . ., w,, are strings ove® representing

the initial multiset of objects present in the cells of the system (it is assumed that we have
mcells, labelled with 12, ..., m), E € O is the set of objects present in arbitrarily many
copies in the environmendyn C {(i, j) | i, j € {0,1,2,...,m},i # j}is the set of links
between cells (we call thesynapsesO indicates the environment) such that foj €
{0,1,...,m} at most one ofi, j), (j, i) is present irsyn s(; j is theinitial state of the
synapsé€i, j) € syn, R jis afinite set of rules of the foris, x/y, s"), for somes, s' € K

andx, y € O*, associated with the synap8e) € syn, and, finally,i, € {1, 2,...,m}is
theoutputcell.

We note the important restriction that there is at most one synapse between two given
cells, and the synapse is given as an ordered (@ajn, with which a state fronK is
associated. This does not restrict the communication between the two cells (or between a cell
and the environment), because we here work with antiport rules, specifying simultaneous
movements of objects in the two directions of a synapse.

A rule of the form(s, x/y, s") € R, j) is interpreted as an antiport rule for the ordered
pair (i, j) of cells, acting only if the synapsg ;) has the stats; the application of the rule
means moving the objects specifieddyom celli (from the environment, if = 0) to cell
j, at the same time with the move of the objects specifieg ibythe opposite direction, as
well as the change of the state of the synapse som’. (The rules with one of, y being
empty are, in fact, symport rules, but we do not explicitly consider this distinction here, as it
is not relevant for what follows.) The objects frdfrare never exhausted, irrespective how
many copies of each of them are brought into the system, arbitrarily many copies remain
available in the environment.

The computation starts with the multisets specifiedy. . ., w,, in themcells; in each
time unit, a rule is used on each synapse for which a rule can be used (if no rule is applicable
for a synapse, then no object passes over it and its state remains unchanged). Therefore, the
use of rules is sequential at the level of each synapse, but it is parallel at the level of the
system: all synapses which can use a rule must do it (the system is synchronously evolving).
The computation is successful if and only if it halts and the result of a halting computation is
the vector which describes the multiplicity of objects frdmresent in cell, in the halting
configuration (the objects fror® — T are ignored when considering the result). The set
of all vectors computed in this way by the systéfis denoted byPs(II). The family of
setsPs(I1) of vectors computed as above by systems with at mostlls, using at most
k states, and rule&, x/y, s") with |x|<i, |y|<i is denoted byPsOtp, (stateg, anti;).

When one of the parameters k, i is not bounded, it is replaced by

Before investigating the computing power of the devices introduced above, let us illustrate

their work by an example:

104 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

(s,a/\ s

s| (s,a/X¢)
(s',b/A,8)
(s',b/A,8")

)
)

(s,a/,s) (s,b/A,)
s | (s,b/A8) s | (s,a/As)

(s,\a,s)

(s,A\/b, s)

2 :
Fig. 1. The systend/ (rules and initial configuration).

Example 1. Formally, we consider the following tissue P system with channel states of
degree 3:

II1 = (0, T, K, w1, w2, w3, E, syn, (s, j) i, jesyn> (Rii, j)) G, pHesyns 1o)

O ={a, b},

T ={a, b},

K ={s,s,s"},

w; =4, forall i € {1,2, 3},
E=0,

syn=1{(0, 1), (1, 2), (1, 3)},
Ro.1y=1{(s,a/ls), (s,a/ls’), (s',b/2s"), (s',b/2 5"},
Raz ={(s,a/l,s), (s,b/A,s), (s, /a,s), (s, A/D,s)},
Rw3) =1{(s,b/2,5"), (s',a/2,5)},
ip=3.

The system is pictorially given in Fid, with the synapses represented by arrows, having
associated the initial states and the rules from the respective sets (the directionality of the
arrows thus specifies the way the rules are applied); each cell has the initial multiset of
objects inside and the label outside; the output cell, that one with label 3, is indicated by
having it doubly encircled.

The functioning of the systerfi; is rather clear: in stats, cell 1 brings inside: >0
copies of object, then the synapsé, 1) changes the state & when one further is
brought in; in state’ we bring a numben > 0 of copies of objedb into cell 1; the process

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 105

is finished only by passing to staté, hence, at least one copy bfis introduced. Any
copy ofa andb can oscillate forever between cells 1 and 2, hence, the computation can
stop only if all objects are moved to cell 3, the output one. The channel from cells 1 to
3 can be “opened” only by a copy &f which changes the state of this synapse’to
in the presence of , a copy ofa is moved from cells 1 to 3 and the state returns.to
Consequently, we can stop if and only if either the numbeesarfdb introduced in cell 1
are equal, or the number of copieshoi larger by 1 than the number of copiesaofThat
is, Ps(Il1) = {(n,n) | n>1}U{(n,n+1) | n>1}.

It is worth noting that the system uses only rules where one object passes through a
synapse, in either direction.

3. Technical prerequisites

In the proofs of the next section we will use register machines and matrix grammars
(without appearance checking), that is why we introduce these computing devices here.
In what concerns register machines, we refdi fi for original definitions, and t§b5,6]
for definitions like that we use in this paper.
A (non-deterministirregister machinés a constructM = (n, R, lg, I;;), wheren is the
number of registerf}is a finite set of instructions injectively labelled with elements from
a given setab(M), lp is the initial/start label, ang}, is the final label.
The instructions are of the following forms:
o I1: (add(r),lo, 13),
Add 1 to the contents of registerand proceed to one of the instructions (labelled
with) /> andlsz. (We say that we have an ADD instruction.)
o [1: (sub(r),ls,13),
If registerr is not empty, then subtract 1 from its contents and go to instruégion
otherwise proceed to instructiégn (We say that we have a SUB instruction.)
e [: halt,
Stop the machine. The final lakiglis only assigned to this instruction.
A register machin® is said to generate a vectot, . . ., sx) of natural numbers if, starting
with the instruction with labely and all registers containing the number 0, the machine
stops (it reaches the instructign: halt) with the firstk registers containing the numbers
S1y ¢ 0vy Ske
The register machines are known to be computationally universal, equal in power to
(non-deterministic) Turing machines: they generate exactly the sets of vectors of natural
numbers which can be generated by Turing machines, that is, the fasRlg
Without loss of generality, in the proofs of the following section we will assume that in
each ADD instructiory : (add(r), I, I3) and in each SUB instructiof : (sub(r), I, I3)
the labeldy, I2, I3 are mutually distinct: For instance, to achieve this goal, we replace each
Add instructionly : (add(r), I2, I3) by the instructioriy : (add(r), I5, 13") and each SUB
instructionly : (sub(r), I2, I3) by the instructioniy : (sub(r), I, [3"), respectively, and in
both cases we add the instructidfs (add(n + 1), [o/7, lé”), lonr : (sub(n + 1), 12, 15),
1Y (sub(n + 1),1p,15), 13" : (add(n + 1), 13,15, 13 : (sub(n + 1),13,13"), 1§ :
(sub(n + 1), 13, 13"), wheren + 1 is a new register (this can be the same for all ADD and

106 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

all SUB instructions we start from), and all primed labels are distinct and different from the
initial labels.

In the following, we also usenatrix grammarsFor details, we refer tf3] and to the
chapter of14] devoted to regulated rewriting; here we only introduce the particular case
we need below.

A matrix grammar(without appearance checkipgs a constructG = (N, T, S, M),
where N, T are disjoint alphabets§ € N, andM is a finite set of ordered sequences
of the form (A1 — x1,..., A, — x,), n>1, of context-free rules oveN U T (with
A; € N,x; € (N UT)* in all cases)N is the non-terminal alphabet, is the terminal
alphabetSis the axiom, while the elements bf are called matrices.

Forw,z € (N UT)* we writew = z if there are a matriXA1 — x1,..., Ay = x,)
in M and stringaw; € (N UT)*, 1<i<n + 1, such thatw = w1, z = w,+1, and, for all
1<i<n, w; = wjA;w;”, wiy1 = wix;w;”, for somew!, w;” € (N U T)*. The language
generated bys is defined byL(G) = {w € T* | S =* w}.

By MATwe denote the family of languages generated by matrix grammars. Itis known that
PsCF c PsMAT c PsRE(for instance PSMAT contains non-semilinear sets of vectors,
which is not the case witPsCF on the other hand, the one-dimensional vectors from
PsMATare semilinear, whil®sREcontains non-semilinear sets of numbers).

The power of matrix grammars is not decreased if we only work with matrix grammars
in thebinary normal form(see[3]). A matrix grammaiG = (N, T, S, M) is in the binary
normal form if it hasv = N1 U N, U {S}, where these three sets are mutually disjoint, and
each matrix irM is of one of the following forms:

(1) (S — XA), with X € N1, A € No,

(2) (X > Y, A—x),withX,Y € N;, A € No, x € (N2UT)*, |x| <2,

B) (X > 4, A— x),with X € N1, A € Np, andx € T*, |x| <2

Moreover, there is only one matrix of type 1 and a matrix of type 3 is used only once, in
the last step of a derivation.

In the following we shall use a slightly different variant of this binary normal form by
adding one new non-terminfihdicating its unique final “state”, i.e., from a matrix grammar
G = (N, T, S, M) in the binary normal form as above we construct the matrix grammar
Gy =(NU{f},T,S, My) in f-binary normal formwith

My=M-{X—>2L,A->x)|X>ALA=>x)eM,
X eNi,Ae Ny,x € TH))
U{X > fLA—=>Xx)| (X > AL A—>x)eM,
X eNi,Ae Ny,x € TH})
U{(f = D}

Hence,M s contains rules of the following forms:
1) (S— XA), with X € N1, A € No,
2) (X =Y, A— x),withX,Y € N1, A € No, x € (N2UT)*, |x]<2,
(B) (X — f,A— x),with X € N1, A € No, andx € T*, |x| <2,
@) (f = 4.
Moreover, there is only one matrix of type 1 and only one matrix of type 4, which is only
used in the last step of a derivation yielding a terminal result.

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 107

It is obvious that a usual tissue-like P system (without states) can be considered as
having the same state associated with all synapses, never changing. Because P systems
with one membrane and using antiport rules of weight at least two are universal in the
case of maximally parallel use of rules (see, ¢57,8)), it is expected that a similar
result holds true also in our case. However, this does not happen: if we have only one
cell, irrespective how many states and how complex rules we use, we get at most the
Parikh images of matrix languages (without appearance checking). The explanation of this
important difference between our results and those flm8]lies in the difference between
the way the two types of systems work: sequentially here, in a maximally parallel manner in
the cited papers (as we have mentioned in the Introduction, the maximal parallelism together
with the halting condition for defining the successful computations provides the necessary
tools for simulating the appearance checking, which is not the case for the sequential
use of rules; moreover, the appearance checking is exactly the difference bét@en
and universality—matrix grammars with appearance checking are equivalent to Turing
machines). However, universality can be obtained also in our case as soon as we use at least
two cells.

We start with the characterization of the Parikh images of matrix languages.

Lemma 2. PSMAT C PsOtp (states, antiy).

Proof. Letus consider a matrix gramm@r= (N1U N2 U{S, f}, T, S, M) in the f-binary
normal formwher&S — XoAp) is the initial matrix ofM. Then we construct the tissue-like
P system with channel states

II=(0,T,K, AoZ, 0,{(0, 1)}, Xo, Ro,1). 1.

O0=NUTU({Z},

K=NU{flU{(X,) | X e NtU{f}, . € NoUT},

Roy={X, /A, V)| (X =Y, A—>a)eM,

XeN,YeNU{f},Ae Ny, € NoUT U {A}}
U{(X, aa/A, (Y, a2)), (Y, 02), 02/ A, Y) | (X = ¥, A — aq00) € M,
X eNy, YeNLU{f},Ae No,o1,00 € NoUT}
U{(fL A/A,) | A e N2y UL(S, A/ Z,)}
U{(X,Z/Z,X)| X € N1}

The matricesX — Y, A — x) of M are simulated by simultaneously changing the state of
the unique synapse and exchanging an internal oBjemtthe multisei. If x consists of at
most one symbol, then the simulation is done in only one step=fx; 02, then the objects
o1, op are brought into the system in two consecutive steps. When the s&atéroduced,
we check whether the derivation@is terminal and only in the affirmative case we halt. As
long as the state of the synap$el) is notf, the computation continues, at least by a rule
of the form(X, Z/Z, X) for someX € N1. The auxiliary objecE is sent out by means of
the rule(f, A/Z, f) and then the computation stops. ConsequetithL(G)) = Ps(I]).

O

The number of states can be decreased to one if we use more powerful rules.

108 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

Lemma 3. PSMAT C PsOtp (state1, antiy).

Proof. Consider a matrix grammag = (N1 U No U {S, f}, T, S, M) in the f-binary
normal form wheréS — XoAp) is the initial matrix ofM; now we construct the tissue-like
P system with channel states

I1=(0,T,{s}, XoAo, 0, {(0, D}, s, Ro,1), D),
O=N1U{fIUN2UTU{(X,0fp) | X e NyU{f}, 0, f € N2UT},
Ro1={(s.Yx/XA.s) | (X > Y. A>x)eM

X eN,YeNU{f},A€e NoyxeNoUTU{i}}

U{(s, Y(Y, a100)/ XA, s5), (5, 0102/(Y, 0t102),) |

(X > Y, A— oqo0) € M,

X eNy, YeNLU{f},Ae No,o1,00 € NoUT}

U{(s, o/, 8) | o« € N1 U N2} U {(s, A/f, s)}.

The state plays no role, the matricesdvbfrre simulated by the antiport rules. As long as at
least one non-terminal from; U N is present, the computation must continue. Hence, the
equality¥7(L(G)) = Ps(II) is obvious. [

We now pass to considering the opposite inclusions, proving that one-cell systems cannot
exceed the power of matrix grammars, irrespective how many states we use and how complex
the rules are that we use.

Lemma 4. PsOtp (state, anti,) € PSMAT.

Proof. LetIl = (O, T, K, w1, E, {(0, 1)}, so, Ro,1). 1) be a tissue-like P system with
channel states.
Then we first construct the matrix gramn@r= (N, T, S, M) with

N=KU{s|seK}Uld |ae O}U{S)},
T={(s"|seK}UuO

and the following matrices:

(1) (S — soh(w1)),

(2) (s1 — s2h(x)), for (s1, x/4, 52) € R(0,1),

() (s1—> 52,91 = Ao y,’(— /), for (s1, 4/y, s2) € R(o,1) and
y=y1y2...y, k=1, withy; € 0, 1<i <k,

(4) (s1 = s2,y7 = h(x), y5 = A, ...,y = A), for (s1,x/y, s2) € Ro,1) and
y=y1y2...y, k=1, withy; € 0, 1<i <k,

(B) (s > s), fors € K,
("= s',a —a),forseK,ae 0,
(s" — s"), fors e K,

whereh is the morphism which replaces eaclke O by a’.

In the presence of non-terminals frénwe simulate the rules from g 1); at any moment
we can introduce a primed state, in the presence of which we transforna'efacty € O
into the terminak; we end the derivation by replacing the primed state by a double primed
version of it, which is a terminal symbol f@3.

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 109

Now, consider the regular language

L={s1"z1yz2 | (s1,x/y,52) € Ro,1), 51,52 € K, x,y,21,22 € O%, y # 1}
U{s1”z | (s1,x/4, s2) € Ro1), 51,52 € K, x,z € O*}.

This language contains all strings that describe configurations for which the computation
in IT is not halting. Thus, the languad@é = {s” | s € K}O* — L contains all strings which
describe halting configurations. Therefofg(G) N L’ identifies all halting configurations

that were encoded in the strings bfG). Now consider the morphismg which erases

the symbolss”, s € K, as well as all symbols fron® — 7’. The equalityPs(Il) =

Y (g(L(G) N L") holds. As the family of matrix languages is closed under intersection
with regular languages and morphisms (cledrlgnd L’ are regular), we obtai®s(I1) €
PsMAT, and this completes the proof. [J

By combining the previous three lemmas, we get the following characterizations of
PsMAT

Theorem 5. PSMAT = PsOtp (statex, anti;) = PSOtp (state, anti;) for all k>1and
i >2as well as for allj >1 (each ofk, i, j can also be equal te).

Obviously, one-cell systems with one state and antiport rules of weight 1 can only gen-
erate finite languages. However, if at least two cells are used, then even with antiport rules
of minimal weight we again get computational universality. The result is relevant both in
comparison with the previous theorem (thus specifying a sharp borderline between univer-
sality and non-universality), and if we compare it with the main resu[lhfwhere the
universality (of cell-like P systems with a maximal use of symport/antiport rules of minimal
weight) is obtained when using five membranes. In our case, two cells suffice, a fact which
proves the power of using states.

Theorem 6. PSRE= PsOtp, (statey, anti;) for all m >2 andi >1.

Proof. We only prove the inclusiosRE € PsOtp(state,, antit). To this aim, let us
consider a register machiné = (n, R, lo, I;,) (with lab(M) = {g1, ..., g}) generating
the set of vectorsV (M) < N, for somek >1, and construct the tissue-like P system (of
degree 2)

I1=(0,T,K, wy, E,{(0,1),(,2),(0,2)},l,s,s, Ro.1), R1,2), Ro,2), 1),
O={a; | 1<i<n}U{L,I',Im, 1" || € lab(M)},

T ={a; | 1<i<k},

K={s,s}U{l,I",I" |1 € lab(M)},

w2 =g185- - &

E=0,

with the following sets of rules:
(1) For each ADD instructioty : (add(r), I2, I3) of M, we introduce the rules
(I1,a, /A, I2) and(l1, a, /A, I3) in Ro0,1)-

110 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

Clearly, the instruction of the register machine is correctly simulatdd (ke current
label of the synaps@, 1) is always related to the label of the current instruction from
the computation oM).

(2) For each SUB instructiol : (sub(r), l2, [3) from Rwe introduce the rules indicated
in the table below in the sets of rules@t The rules are given as used in the five steps
necessary il to simulate this instruction.

Step R.1) Ra.2) R.2)
1 (I1, 11/ A, 11" Nothing Nothing
2 (", 1) 2, 1Y) (s,11/2,11) Nothing
3 A, 18/ 1y 1Y) (1, ar/ly, s') or (s,15/11, 5)
nothing
4 Ay, 2/ 1, 1) or (s', 1%/ 2, 5) or Nothing
nothing (11, 17/15,)
5 New instruction or Nothing (s,15/13,5)

150, 2/ 13, 13)

Under the control of the labé{, we bring the object; into the first cell (and the
state of the synapg@, 1) is changed td,”). In the second step, objelgtis sent to the
second cell, thus changing the label of the syndfs®) to /1. Simultaneouslyiz /. is
brought into the first cell (under the control of the lahélof the synaps€0, 1), which
is changed tin“). Now, we can start checking whether there is anin cell 1. If this is
the case, then the ruiéy, a, /15, s") must be used, and it sends a copy:ofo cell 2; if
no copy ofa, is present, then no rule is applied on the syndfisg). Simultaneously,

I1 leaves cell 2 and in exchanggis brought (back) from the environment, while on
the synapse0, 1) we use the rulg/i®, 1 /11, 11"); its role is to bring the “checker}
into the system, leaving to cell 1 the time to send a copy,db cell 2, provided that
such a copy exists.

Inthe next step; is sentto cell 2, nothing is used on the synaiis), while on the
synaps€0, 1) we have two possibilities. i, was available, hencg, was brought into
cell 1, then this objects is sent to the environment and the label of the sy(afdse
becomes,. In this way, we have completed the simulation of the SUB instruction for
the case when the subtraction was possible. Ihevas available, then we do not
communicate between cell 1 and the environment.

However, the wayj passes from cell 1 to cell 2 depends on the label of the synapse
(1, 2), which, in turn, depends on the fact whether or qyoexisted. Ifa, was present,
then the label is’, and!; just returns the label tg§ making possible a new simulation;
otherwise, the label ig, hencel; is exchanged witfi, and the label is returned $ptoo.

In either case, in the next step no rule can be used on the sy(a@ewhile /§ is
sent from cell 2 to the environment, in exchange Wi4thin this way, alsdj is available
again for a possible use in a subsequent step. Was not present, then in step 5 we
sendl5 from cell 1 to the environment, and the label of the synajisé) becomes
I3. This correctly completes the simulation of the SUB instruction for the case that the
subtraction was not possible.

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 111

We should like to emphasize the important details that in cell 1 we only have copies
of the objects:; for thosej representing non-zero registersii and that the contents
of cell 2 is restored, with objeci$ present for all € lab(M) — with one further copy
of one of the objects), /5 (during the simulation, we bring both of them from the
environment into cell 2, although only one of them then is sent to cell 1 in order to
change the label of the synap$e 1)).

(3) No rule is introduced for labd}, of synapse0, 1), hence, the work ofI will stop

exactly when the work o1 stops.
From the explanations given above we conclude hwa¥) = Ps(Il). [

The previous proof uses a number of states which depend on the number of labels used
by the register machine simulated by our system. The number of states can even be reduced
to 1 at the expense of increasing the weight of rules by one.

Theorem 7. PSRE= PsOtp, (statey, anti;) forall m >2,k>1,andi > 2.

Proof. We again consider a register machiie= (n, R, lo, I;,) (with lab(M) = {g1, ...,
g:}) generating the set of vectoM(M) € NF, for somek > 1, and construct the tissue-like
P system (of degree 2)

II=(0,T,K,lp, wz, E,{(0,1), (1,2),(0,2)},s,s,s, Ro,1, R12, Ro,2. D,
O =1{a; | 1<i<n) UL I 1", Im |1 € lab(M)} U {e},
T ={a; | 1<i<k},

K ={s},
w2 =eg182... 8,
E=0,

with the following sets of rules:
(1) For each ADD instructiofy : (add(r), I2, [3) from R, we introduce the rules
(s, l2a, /11, s) and(s, Iza, /11, s) in R,1)-
(2) For each SUB instructiol : (sub(r), l2, I3) from Rwe introduce the rules indicated
in the table below in the sets of rules@df The rules are given as used in the five steps
necessary il to simulate this instruction. The states play no rdle in the computation,
the SUB instructions dfl are simulated by the antiport rules in a way rather similar to
that from[7], but using the rules in a sequential manner and making use of having two
cells (and the environment) for controlling the computation.
The label; is replaced by;, /1" in the first cell. In the second step, if a copyaf
is present, then the objekitis sent to the second cell together with a copy,ofind
the auxiliary objeck is brought into cell 1; if no copy ofi. exists, then} waits in
cell 1. Simultaneously; /7 is brought into the first cell in exchange/af. In the third
step,l1//7 checks what happened in cell 1 in the previous step: if we hered@ve,
a, was present), then the objeéts/, e bring the label, from cell 2, thus completing
the simulation of the SUB instruction for the case when the subtraction was possible.
If we still havel in cell 1, then the objects/, I; bring/s from cell 2, thus completing
the simulation of the instruction for the case when the subtraction was not possible.

112 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

In cell 2, we exchangg with I> (which is brought in from the environment), either
in step 3 (in the case when was present), or in one of steps 4 and 5; in the latter case,
the rule(s, I2/17, s) is used in alternate steps with the ratelz/[1/7, s), which brings
the labels into the system. In this way, the contents of cell 2 is restored, hence, we can
continue simulating the instructions bf.

Step R.1) Ra.2) R0.2)
1 (s, 191" /11, 5) Nothing Nothing
2 (s, a1/ 11", s) (s,lhar/e, s) Nothing
3 Nothing (s, Irme/ 12, s) or (s,12/13,5)
(s, L1/ 13, s)
4 New instruction Nothing (s, I3/11/11,) or
(s,12/11,5)
5 New instruction New instruction (s,12/13,5) or

(s, 13/ 1111, 5)

(3) We also introduce the rule
(s, 2/ln, s)In R(0,1),
hence, the work ofI will stop exactly when the work dfl stops (and with the copies
of the objects;, 1<i <k, in cell 1 representing the result of the computation).
From the explanations given above we infer tNaiV/) = Ps(I1). O

The previous result shows that when rules of weight at least two are available, the hierar-
chies on the number of cells and states simultaneously collapse at level two and level one,
respectively.

For antiport rules of minimal weight such a strong result is not known, although we can
again bound the number of states (the hierarchy now collapses at level three), yet only
provided that the number of cells can be arbitrary.

Theorem 8. PSRE= PsOtp (statey, anti;) for all k>3 andi > 1.

Proof. Consider a register machié = (n, R, lo, [;), with u ADD instructions,y SUB
instructions, and generating(M) < N¥, for somek >1.
Then we construct the tissue-like P system with channel states

nI=(0,T,K,wi,...,E,syn,s,....,s,Ro1..... 1),

of degree H-u + 2v, with the cells labelled by ladds, . .., add,, suby, suby, ..., sub,,
subl,, with the initial state of all synapses beis@nd the output cell being that one with
label 1, as well as

0 ={a; | 1<i<n}Ulab(M) U {e, #},

T ={a; | 1<i<k},
K ={s,s, s"},
w1 =lo,
Wadq; =#, forall 1<i<u,

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 113

Wsup; =#, forall 1<i <,
W,y =e, forall 1<i <,
E=0,

syn={(0, 1}
U{(,add;), (0,add;) | 1<i<u}
U {1, sub;), (subj, sub;), (0, sub;) | 1<i<v}

and with the sets of rules associated with the synapses as follows:

R0 = {(s, #/#,5), (s, A/lp, 8)},
R1,addy) = {(s, 11/ 4, s, (', Aar, sy, (5",)12, 5), (s",)13, 5),
(s', A/#,), (5", 2/#,)},
R0.addy) = (s, ar /2, 8), (s,12/2,5), (s,13/2,5),
(s,e/A, s}, forall i e {1,2,...,u},
with the ith ADD rule being /1 : (add(r), I2),
Rsuby ={(s, 11/ 2, 8", (5" ar /2, s"), (s, 2/ 12, 9),
", A/#,8), (', 2)13,8)},
R (sub; subly = ((s,Iz/e, s, (s', e/l s), (s,13/2,5)},
Ro,sub;) = {(s, 2/ 11, sN, (5", 13/, 5)}), forall i e {1,2,..., v},
with the ith SUB rule beingls : (sub(r), I2, [3).

The structure of the systemd, in the initial configuration, together with the sets of rules
associated with the typical synapses, is pictorially indicated inZigVith the copies of
the objectsy;, 1<i <n, we simulate the work of the register machite at the end of a
halting computation, the copies of the objegts1 <i <k, in cell 1 represent the result of
the computation.

The simulation of ADD instructions &l is done with the help of the cellgld;, 1<i <u.
Specifically, for each instructicadd; of the formly : (add(r), I, [3) we proceed as follows.
First,/; passes to cefldd; and the state of the synapde add;) is changed te’. This makes
possible the passage®ffrom celladd; to cell 1; because the state of the synapse becomes
s, in the next step we can also brikgor I3 into cell 1, returning the state of the synapse to
s. The objects,, I, I3 must be available in cedidd; at the right moment, because otherwise
the trap symbol # is brought from celtid; to cell 1, and then the computation never stops
(the rule(s, #/#, s) will be used forever on the synapé@ 1)). The objectss,, I, I3 are
brought to celbdd; from the environment in the presence of sedésynaps€0, add;); in
order to stop bringing objects into cellid;, we change the state of this synapse fstms’,
when bringing inside the auxiliary objeet Therefore, the instructioly : (add(r), I, I3)
is correctly simulated (the states of the used synapses have returned to ths, ihéiate,
we can simulate other instructions).

The SUB instructionsub;, of the formly : (sub(r), I2, I3), is simulated through the
interaction of cell 1 with the cellsub; andsub, in the following way. First, the objeét is
sent from cell 1 to celfub;, and the state of the synap&e sub;) is changed ta’. In the
next step/s exits cellsub;, being exchanged with, and the state of the synap®kg sub;)

114 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

s

G #HH#) | o .
add; (s, \/1h, 8) M sub)
s) s s)
{#) FH——©
s add; . 5 sub; sub)
() ()
(s,ar/)\, S) \#J (3711/)‘»3,) (s’ll/)‘, 3,) ®(S,12/e, S,)@
(57 l2/)‘7 S) (SI7)‘/a"l‘? S”) (SI7 a'T/A7 S”) (Slv 6/)\, S)
(s,13/A, 8) (8", M\/lg, s) (8", X\/lg,)
(57 6/)\, sl) (5”’ A/l3’ 3) (5”’)‘/#7 3)
(517)‘/#73 (SI,)\/lg,S) (I /l ,)
Y 8,02/01,8
(" M) 5 a/1,5)
suby, sub),
e N e
® BH——©

add, __/ \
1 S

Fig. 2. The structure of the system from the proof of Theo8m

becomes’. Simultaneously, if any copy of. is presentin cell 1, then the rWl€, a, /1, s”)
is used, hence, one copy @f leaves cell 1 and the state of the synagiseub;) becomes
s”. 1f no copy ofa, exists in cell 1, then the state of the synapse remdiasad no rule is
used here. In the third step, if the state of the synéhse:b;) iss”, thenl, passes from cell
sub; to cell 1, returning the state of this synapses{@and making possible the simulation
of another rule). At the same tima, enters cellsub;, returning the state of the synapse
(0, sub;) to s. Instead of passing to cell 1, the objégtcan also pass to celkb;, but in
this case the trap symbol will be sent to cell 1, by means of the(stilel/#, s), and the
computation will never stop. If the simulation of the case whgrxists is correct, i.e.,
I> enters cell 1, theds will pass to cellsub! in the next step (as the state of the synapse
(sub;, sub}) has remained, the rule(s, I3/4, s) € R (sub; sub!) €@N be used). If no copy of
a, is present in cell 1, then, after passindo cell sub; and exchanging it witl, from the
environment/, must pass to celub’, in exchange witte, replacing state by s” on the
synapsesub;, subl’.). At the same timeg enters celkub;. In the next stepgz cannot go to
cell sub, because of the statéof the synapseésub;, sub;), hence, it has to go to cell 1 by
means of the rulés’, 1/13, s) (the state of this synapse has remaisiethecause na, has
changed’ into s” as above). At the same time, the auxiliary objepasses back from cell
sub; to cellsub!, returning the state of this synapsesto

The simulation of the SUB instruction now is complete, the states of the synapses are
agains, hence, the simulation of instructionsMfcan continue.

R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116 115

In the whole simulation process, it is essential that in each ADD instrulitiotudd (r),
I2,13) and in each SUB instruction : (sub(r), [2, l3) the labelsly, I, I3 are mutually
different.

When the halt labé}, is introduced in cell 1, it exits by means of the r@g¢e /15, s) and
the computation stops. We conclude thatd) = Ps(I1) and this ends the proof. [J

4. Further variants

The previous systems work in the generative mode, using the rules in a sequential manner.
Obvious variations are obtained by considering the accepting mode. A possibility is to
designate a cell as the input one, and to start the computation by introducing a multiset in
that cell; this multiset is accepted if and only if the computation halts.

Another possibility is to consider as accepted the sequence of objects taken from the
environment during a halting computation (afdmt,13) and in this way we obtain language
recognizing devices. The example from Section 2 works in a way for which this mode to
define the recognized language is apparent—the language recognideddayon-regular.

Then, of interest is to consider a parallel use of rules. In order to avoid conflicts in
changing the labels, in each step, on each synapse, all rules leading from sitattte
same state’ should be considered. More specifically, “tables” of the fafm(s, s") =
{(s,x/y,s") | (s,x/y,s") € R,)} can be defined, for each synagsej) and for each pair
(s, s") of states; in each step one table is non-deterministically chosen and then used in a
maximally parallel manner.

All these possibilities remain to be investigated. In general, we believe that the tissue-
like P systems (with channel states) deserve further research efforts, motivated both by the
mathematical problems they raise and also by the interesting connections with inter-cell
communication in tissues (an important biological fact, see, [@)3, heuron interaction in
the brain, distributed computing (internet included).

References

[1] F. Bernardini, A. RUn, Universality of minimal symport/antiport: five membranes suffice, in: N. Jonoska,
Gh. Raun, G. Rozenberg (Eds.), Aspects of Molecular Computing. Essays Dedicated to Tom Head on the
Occasion of His 70th Birthday, Lecture Notes in Computer Science, Vol. 2950, Springer, Berlin, 2004, pp.
43-54.

[2] E. Csuhaj-Varju, G. Vaszil, P automata or purely communicating accepting P systems, inauh.G2~
Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing, Internat. Workshop WMC 2002, Curtea
de Arges, Romania, Revised Papers, Lecture Notes in Computer Science, Vol. 2597, Springer, Berlin, 2003,
pp. 219-233.

[3] J. Dassow, Gh. &in, Regulated Rewriting in Formal Language Theory, Springer, Berlin, 1989.

[4] R. Freund, M. Oswald, A short note on analysing P systems with antiport rules, Bull. EATCS 78 (2002) 231
—236.

[5] R. Freund, M. Oswald, P Systems with activated/prohibited membrane channels, imuBhG?Rozenberg,

A. Salomaa, C. Zandron (Eds.), Membrane Computing, Internat. Workshop WMC 2002, Curtea sle Arge,
Romania, Revised Papers, Lecture Notes in Computer Science, Vol. 2597, Springer, Berlin, 2003, pp. 261—
268.

116 R. Freund et al. / Theoretical Computer Science 330 (2005) 101-116

[6] R. Freund, Gh. &in, On the number of non-terminal symbols in graph-controlled, programmed and matrix
grammars, in: M. Margenstern, Y. Rogozhin (Eds.), Proc. Conf. Universal Machines and Computations,
Chisindu, 2001, Lecture Notes in Computer Science, Vol. 2055, Springer, Berlin, 2001, pp. 214-225.

[7] R. Freund, Gh. &in, On deterministic P systems, 2003, submitted for publication.

[8] P.Frisco, H.J. Hoogeboom, Simulating counter automata by P systems with symport/antiport, auGiG P~
Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing, Internat. Workshop WMC 2002, Curtea
de Arges, Romania, Revised Papers, Lecture Notes in Computer Science, Vol. 2597, Springer, Berlin, 2003,
pp. 288—-301.

[9] W.R. Loewenstein, The Touchstone of Life, Molecular Information, Cell Communication, and the Foundations
of Life, Oxford University Press, New York, Oxford, 1999.

[10] C. Martin-Vide, J. Pazos, GhaBi, A. Rodriguez-Paton, Tissue P systems, Theoret. Comput. Sci. 296 (2)
(2003) 295-326.

[11] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ, USA, 1967.

[12] Gh. Raun, Computing with Membranes: An Introduction, Springer, Berlin, 2002.

[13] Gh. RAun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.), Membrane Computing, Internat. Workshop WMC
2002, Curtea de Arge Romania, Revised Papers, Lecture Notes in Computer Science, Vol. 2597, Springer,
Berlin, 2003.

[14] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages (3 volumes), Springer, Berlin, 1997.

	Tissue P systems with channel states
	Introduction
	Tissue-like P systems with channel states
	Technical prerequisites
	Further variants
	References

