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Abstract

We consider tissue-like P systems with states associated with the links (we call themsynapses)
between cells, controlling the passage of objects across the links.We investigate the computing power
of suchdevices for thecaseof using—inasequentialmanner—antiport rulesof smallweights.Systems
with two cells are proved to be universal when having arbitrarily many states and minimal antiport
rules, or one state and antiport rules of weight two.Also the systems with arbitrarily many cells, three
states, and minimal antiport rules are universal. In contrast, the systems with one cell and any number
of states and rules of any weight only compute Parikh sets of matrix languages (generated by matrix
grammars without appearance checking); characterizations of Parikh images of matrix languages are
obtained for such one-cell systems with antiport rules of a reduced weight.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the area of membrane computing area there are two main classes of systems: cell-
like and tissue-like P systems. The former type is inspired from cell organization (and has
membranes hierarchically arranged, hence, corresponding to a tree), the latter one mimics
the “collaboration” of cells from tissues of various kinds (hence, corresponds tomembranes
placed in the nodes of an arbitrary graph). Actually, there are two sub-classes of tissue-like
P systems, one using symport/antiport rules for communication between cells, and the other
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one, closer to neural net organization, having states associated with the cells, for controlling
multiset rewriting rules which make evolve the multisets of objects in the cells.
In the present paper, we take a different perspective, somewhat mixing the two sub-cases

of tissue-like systems: we associate states to the links between cells, and use these states in
order to control the communication between cells; in its turn, the communication is done
by means of symport/antiport rules. Between two cells at most one link is established (also
calledsynapse). Because the states can be changed by using rules, a conflict can appear
when two rules used on the same link ask for changing the state to two different new states.
That is why we use the rules in a sequential manner: on each possible channel between two
cells we use only one rule. At the level of the whole net of cells, the evolution is parallel
(synchronous): we have to use a rule on each synapse where a rule can be used.
Considering a sequential use of rules on each link between cells is also challenging from

a mathematical point of view; the maximal parallelism, usual in membrane computing,
combined with the definition of successful computations as the halting ones, is a powerful
tool in “programming” the work of P systems of various types (in particular, it provides a
way to implement “appearance checking”, as in regulated context-free grammars). In our
framework, the expected loss in power induced by the sequential use of rules is compensated
by the use of states.
The issue of considering states associated with the communication channels between

membranes is part of amore general research topic, that of considering tissue-like P systems
with a dynamic structure (dynamically changing membranes and/or links between them).
Our approach can be considered as a partial answer to this general problem, as the states
control the passage of objects across the links, selectively permitting the objects to pass,
possibly completely inhibiting certain channels.
The power of systems as suggested above, with antiport rules of small weights used

sequentially are shown to be Turing complete in the case of two cells (even with minimal
antiport rules, if “enough” statesareused) and to characterize theParikh imagesof languages
generatedbymatrixgrammarswithoutappearancechecking in thecaseofonecell (nomatter
how many states and no matter how general the rules are that are used).
The case of the parallel use of rules (in a step we can use simultaneously all rules which

pass from a given state to a unique next state)—as well as other related problems—remain
to be investigated.

2. Tissue-like P systems with channel states

The reader is supposed to be familiar with basic elements of membrane computing, e.g.,
from [12]; rather useful is the comprehensive information that can be found in the web page
http://psystems.disco.unimib.it . For the basic elements of formal language
theory needed in the following, we refer to any monograph in this area, in particular, to[14]
(we just mention thatV ∗ is the freemonoid generated by the alphabetVunder the operation
of concatenation and the empty string, denoted by�, as identity; byREwe denote the family
of recursively enumerable languages, and byCF the family of context-free languages; by
�T (L) we denote the Parikh image of the languageL ⊆ T ∗, and byPsFLwe denote the
set of Parikh images of languages from a given familyFL).

http://psystems.disco.unimib.it
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Tissue-like P systems were introduced in[10]. Here we deal with the following type of
systems:
A tissue-like P system(of degreem�1)with channel statesis a construct

� = (O, T , K, w1, . . . , wm, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),

whereO is the alphabet ofobjects, T ⊆ O is the alphabet ofterminal objects,K is the
alphabet ofstates(not necessarily disjoint ofO),w1, . . . , wm are strings overO representing
the initial multiset of objects present in the cells of the system (it is assumed that we have
mcells, labelled with 1,2, . . . , m), E ⊆ O is the set of objects present in arbitrarily many
copies in the environment,syn ⊆ {(i, j) | i, j ∈ {0,1,2, . . . , m}, i �= j} is the set of links
between cells (we call themsynapses; 0 indicates the environment) such that fori, j ∈
{0,1, . . . , m} at most one of(i, j), (j, i) is present insyn, s(i,j) is the initial stateof the
synapse(i, j) ∈ syn,R(i,j) is a finite set of rules of the form(s, x/y, s′), for somes, s′ ∈ K

andx, y ∈ O∗, associated with the synapse(i, j) ∈ syn, and, finally,io ∈ {1,2, . . . , m} is
theoutputcell.
We note the important restriction that there is at most one synapse between two given

cells, and the synapse is given as an ordered pair(i, j), with which a state fromK is
associated.This does not restrict the communication between the two cells (or betweena cell
and the environment), because we here work with antiport rules, specifying simultaneous
movements of objects in the two directions of a synapse.
A rule of the form(s, x/y, s′) ∈ R(i,j) is interpreted as an antiport rule for the ordered

pair(i, j) of cells, acting only if the synapse(i, j) has the states; the application of the rule
means moving the objects specified byx from cell i (from the environment, ifi = 0) to cell
j, at the same time with the move of the objects specified byy in the opposite direction, as
well as the change of the state of the synapse froms to s′. (The rules with one ofx, y being
empty are, in fact, symport rules, but we do not explicitly consider this distinction here, as it
is not relevant for what follows.) The objects fromE are never exhausted, irrespective how
many copies of each of them are brought into the system, arbitrarily many copies remain
available in the environment.
The computation starts with the multisets specified byw1, . . . , wm in themcells; in each

time unit, a rule is used on each synapse for which a rule can be used (if no rule is applicable
for a synapse, then no object passes over it and its state remains unchanged). Therefore, the
use of rules is sequential at the level of each synapse, but it is parallel at the level of the
system: all synapses which can use a rulemust do it (the system is synchronously evolving).
The computation is successful if and only if it halts and the result of a halting computation is
the vector which describes the multiplicity of objects fromTpresent in cellio in the halting
configuration (the objects fromO − T are ignored when considering the result). The set
of all vectors computed in this way by the system� is denoted byP s(�). The family of
setsP s(�) of vectors computed as above by systems with at mostm cells, using at most
k states, and rules(s, x/y, s′) with |x|� i, |y|� i is denoted byPsOtpm(statesk,antii ).
When one of the parametersm, k, i is not bounded, it is replaced by∗.

Before investigating the computingpower of thedevices introducedabove, let us illustrate
their work by an example:



104 R. Freund et al. / Theoretical Computer Science 330 (2005) 101–116

Fig. 1. The system�1 (rules and initial configuration).

Example 1. Formally, we consider the following tissue P system with channel states of
degree 3:

�1 = (O, T , K, w1, w2, w3, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),

O = {a, b},
T = {a, b},
K = {s, s′, s′′},
wi = �, for all i ∈ {1,2,3},
E = O,

syn = {(0,1), (1,2), (1,3)},
R(0,1) = {(s, a/�, s), (s, a/�, s′), (s′, b/�, s′), (s′, b/�, s′′)},
R(1,2) = {(s, a/�, s), (s, b/�, s), (s, �/a, s), (s, �/b, s)},
R(1,3) = {(s, b/�, s′), (s′, a/�, s)},

io = 3.

The system is pictorially given in Fig.1, with the synapses represented by arrows, having
associated the initial states and the rules from the respective sets (the directionality of the
arrows thus specifies the way the rules are applied); each cell has the initial multiset of
objects inside and the label outside; the output cell, that one with label 3, is indicated by
having it doubly encircled.
The functioning of the system�1 is rather clear: in states, cell 1 brings insiden�0

copies of objecta, then the synapse(0,1) changes the state tos′ when one furthera is
brought in; in states′ we bring a numberm�0 of copies of objectb into cell 1; the process
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is finished only by passing to states′′, hence, at least one copy ofb is introduced. Any
copy ofa andb can oscillate forever between cells 1 and 2, hence, the computation can
stop only if all objects are moved to cell 3, the output one. The channel from cells 1 to
3 can be “opened” only by a copy ofb, which changes the state of this synapse tos′;
in the presence ofs′, a copy ofa is moved from cells 1 to 3 and the state returns tos.
Consequently, we can stop if and only if either the numbers ofa andb introduced in cell 1
are equal, or the number of copies ofb is larger by 1 than the number of copies ofa. That
is,P s(�1) = {(n, n) | n�1} ∪ {(n, n + 1) | n�1}.
It is worth noting that the system uses only rules where one object passes through a

synapse, in either direction.

3. Technical prerequisites

In the proofs of the next section we will use register machines and matrix grammars
(without appearance checking), that is why we introduce these computing devices here.
In what concerns register machines, we refer to[11] for original definitions, and to[5,6]

for definitions like that we use in this paper.
A (non-deterministic) register machineis a constructM = (n, R, l0, lh), wheren is the

number of registers,R is a finite set of instructions injectively labelled with elements from
a given setlab(M), l0 is the initial/start label, andlh is the final label.
The instructions are of the following forms:

• l1 : (add(r), l2, l3),
Add 1 to the contents of registerr and proceed to one of the instructions (labelled

with) l2 andl3. (We say that we have an ADD instruction.)
• l1 : (sub(r), l2, l3),

If registerr is not empty, then subtract 1 from its contents and go to instructionl2,
otherwise proceed to instructionl3. (We say that we have a SUB instruction.)

• lh : halt ,
Stop the machine. The final labellh is only assigned to this instruction.

A register machineM is said to generate a vector(s1, . . . , sk) of natural numbers if, starting
with the instruction with labell0 and all registers containing the number 0, the machine
stops (it reaches the instructionlh : halt) with the firstk registers containing the numbers
s1, . . . , sk.
The register machines are known to be computationally universal, equal in power to

(non-deterministic) Turing machines: they generate exactly the sets of vectors of natural
numbers which can be generated by Turing machines, that is, the familyPsRE.
Without loss of generality, in the proofs of the following section we will assume that in

each ADD instructionl1 : (add(r), l2, l3) and in each SUB instructionl1 : (sub(r), l2, l3)

the labelsl1, l2, l3 are mutually distinct: For instance, to achieve this goal, we replace each
Add instructionl1 : (add(r), l2, l3) by the instructionl1 : (add(r), l′2, l3

′′) and each SUB
instructionl1 : (sub(r), l2, l3) by the instructionl1 : (sub(r), l′2, l3

′′), respectively, and in
both cases we add the instructionsl′2 : (add(n + 1), l2′′′, liv2 ), l2′′′ : (sub(n + 1), l2, l′2),
liv2 : (sub(n + 1), l2, l′2), l3

′′ : (add(n + 1), lv3, lvi
3 ), lv3 : (sub(n + 1), l3, l3

′′), lvi
3 :

(sub(n + 1), l3, l3
′′), wheren + 1 is a new register (this can be the same for all ADD and
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all SUB instructions we start from), and all primed labels are distinct and different from the
initial labels.
In the following, we also usematrix grammars. For details, we refer to[3] and to the

chapter of[14] devoted to regulated rewriting; here we only introduce the particular case
we need below.
A matrix grammar(without appearance checking) is a constructG = (N, T , S, M),

whereN, T are disjoint alphabets,S ∈ N , andM is a finite set of ordered sequences
of the form (A1 → x1, . . . , An → xn), n�1, of context-free rules overN ∪ T (with
Ai ∈ N, xi ∈ (N ∪ T )∗, in all cases);N is the non-terminal alphabet,T is the terminal
alphabet,S is the axiom, while the elements ofM are called matrices.
Forw, z ∈ (N ∪ T )∗ we writew �⇒ z if there are a matrix(A1 → x1, . . . , An → xn)

in M and stringswi ∈ (N ∪ T )∗,1� i �n + 1, such thatw = w1, z = wn+1, and, for all
1� i �n, wi = w′

iAiwi
′′, wi+1 = w′

ixiwi
′′, for somew′

i , wi
′′ ∈ (N ∪ T )∗. The language

generated byG is defined byL(G) = {w ∈ T ∗ | S �⇒∗ w}.
ByMATwedenote the familyof languagesgeneratedbymatrix grammars. It is known that

PsCF⊂ PsMAT⊂ PsRE(for instance,PsMATcontains non-semilinear sets of vectors,
which is not the case withPsCF; on the other hand, the one-dimensional vectors from
PsMATare semilinear, whilePsREcontains non-semilinear sets of numbers).
The power of matrix grammars is not decreased if we only work with matrix grammars

in thebinary normal form(see[3]). A matrix grammarG = (N, T , S, M) is in the binary
normal form if it hasN = N1 ∪ N2 ∪ {S}, where these three sets are mutually disjoint, and
each matrix inM is of one of the following forms:
(1) (S → XA), with X ∈ N1, A ∈ N2,

(2) (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x|�2,

(3) (X → �, A → x), with X ∈ N1, A ∈ N2, andx ∈ T ∗, |x|�2.

Moreover, there is only one matrix of type 1 and a matrix of type 3 is used only once, in
the last step of a derivation.
In the following we shall use a slightly different variant of this binary normal form by

adding onenewnon-terminalf indicating its unique final “state”, i.e., fromamatrix grammar
G = (N, T , S, M) in the binary normal form as above we construct the matrix grammar
Gf = (N ∪ {f }, T , S, Mf ) in f-binary normal formwith

Mf = (M − {(X → �, A → x) | (X → �, A → x) ∈ M,

X ∈ N1, A ∈ N2, x ∈ T ∗})
∪ {(X → f, A → x) | (X → �, A → x) ∈ M,

X ∈ N1, A ∈ N2, x ∈ T ∗})
∪ {(f → �)}.

Hence,Mf contains rules of the following forms:
(1) (S → XA), with X ∈ N1, A ∈ N2,

(2) (X → Y, A → x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗, |x|�2,

(3) (X → f, A → x), with X ∈ N1, A ∈ N2, andx ∈ T ∗, |x|�2,

(4) (f → �).

Moreover, there is only one matrix of type 1 and only one matrix of type 4, which is only
used in the last step of a derivation yielding a terminal result.
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It is obvious that a usual tissue-like P system (without states) can be considered as
having the same state associated with all synapses, never changing. Because P systems
with one membrane and using antiport rules of weight at least two are universal in the
case of maximally parallel use of rules (see, e.g.[5,7,8]), it is expected that a similar
result holds true also in our case. However, this does not happen: if we have only one
cell, irrespective how many states and how complex rules we use, we get at most the
Parikh images of matrix languages (without appearance checking). The explanation of this
important differencebetweenour results and those from[5,7,8]lies in thedifferencebetween
the way the two types of systemswork: sequentially here, in amaximally parallel manner in
the cited papers (aswehavementioned in the Introduction, themaximal parallelism together
with the halting condition for defining the successful computations provides the necessary
tools for simulating the appearance checking, which is not the case for the sequential
use of rules; moreover, the appearance checking is exactly the difference betweenMAT
and universality—matrix grammars with appearance checking are equivalent to Turing
machines). However, universality can be obtained also in our case as soon as we use at least
two cells.
We start with the characterization of the Parikh images of matrix languages.

Lemma 2. PsMAT⊆ PsOtp1(state∗, anti1).

Proof. Let us consider a matrix grammarG = (N1∪N2∪{S, f }, T , S, M) in the f-binary
normal formwhere(S → X0A0) is the initial matrix ofM. Thenwe construct the tissue-like
P system with channel states

� = (O, T , K, A0Z, O, {(0,1)}, X0, R(0,1),1),

O = N2 ∪ T ∪ {Z},
K = N1 ∪ {f } ∪ {〈X, �〉 | X ∈ N1 ∪ {f }, � ∈ N2 ∪ T },

R(0,1) = {(X, �/A, Y ) | (X → Y, A → �) ∈ M,

X ∈ N1, Y ∈ N1 ∪ {f }, A ∈ N2, � ∈ N2 ∪ T ∪ {�}}
∪ {(X, �1/A, 〈Y, �2〉), (〈Y, �2〉, �2/�, Y ) | (X → Y, A → �1�2) ∈ M,

X ∈ N1, Y ∈ N1 ∪ {f }, A ∈ N2, �1, �2 ∈ N2 ∪ T }
∪ {(f, A/A, f ) | A ∈ N2} ∪ {(f, �/Z, f )}
∪ {(X, Z/Z, X) | X ∈ N1}.

Thematrices(X → Y, A → x) ofM are simulated by simultaneously changing the state of
the unique synapse and exchanging an internal objectA for the multisetx. If x consists of at
most one symbol, then the simulation is done in only one step. Ifx = �1�2, then the objects
�1, �2 are brought into the system in two consecutive steps. When the statef is introduced,
we check whether the derivation inG is terminal and only in the affirmative case we halt.As
long as the state of the synapse(0,1) is not f, the computation continues, at least by a rule
of the form(X, Z/Z, X) for someX ∈ N1. The auxiliary objectZ is sent out by means of
the rule(f, �/Z, f ) and then the computation stops. Consequently,�T (L(G)) = P s(�).

�
The number of states can be decreased to one if we use more powerful rules.
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Lemma 3. PsMAT⊆ PsOtp1(state1, anti2).

Proof. Consider a matrix grammarG = (N1 ∪ N2 ∪ {S, f }, T , S, M) in the f-binary
normal formwhere(S → X0A0) is the initial matrix ofM; now we construct the tissue-like
P system with channel states

� = (O, T , {s}, X0A0, O, {(0,1)}, s, R(0,1),1),

O = N1 ∪ {f } ∪ N2 ∪ T ∪ {〈X, ��〉 | X ∈ N1 ∪ {f }, �, � ∈ N2 ∪ T },
R(0,1) = {(s, Y x/XA, s) | (X → Y, A → x) ∈ M

X ∈ N1, Y ∈ N1 ∪ {f }, A ∈ N2, x ∈ N2 ∪ T ∪ {�}}
∪ {(s, Y 〈Y, �1�2〉/XA, s), (s, �1�2/〈Y, �1�2〉, s) |
(X → Y, A → �1�2) ∈ M,

X ∈ N1, Y ∈ N1 ∪ {f }, A ∈ N2, �1, �2 ∈ N2 ∪ T }
∪ {(s, �/�, s) | � ∈ N1 ∪ N2} ∪ {(s, �/f, s)}.

The state plays no rôle, the matrices ofM are simulated by the antiport rules. As long as at
least one non-terminal fromN1∪N2 is present, the computation must continue. Hence, the
equality�T (L(G)) = P s(�) is obvious. �
Wenow pass to considering the opposite inclusions, proving that one-cell systems cannot

exceed thepowerofmatrix grammars, irrespectivehowmanystatesweuseandhowcomplex
the rules are that we use.

Lemma 4. PsOtp1(state∗, anti∗) ⊆ PsMAT.

Proof. Let � = (O, T ′, K, w1, E, {(0,1)}, s0, R(0,1),1) be a tissue-like P system with
channel states.
Then we first construct the matrix grammarG = (N, T , S, M) with

N = K ∪ {s′ | s ∈ K} ∪ {a′ | a ∈ O} ∪ {S},
T = {s′′ | s ∈ K} ∪ O

and the following matrices:
(1) (S → s0h(w1)),
(2) (s1 → s2h(x)), for (s1, x/�, s2) ∈ R(0,1),
(3) (s1 → s2, y′

1 → �, . . . , y′
k → �), for (s1, �/y, s2) ∈ R(0,1) and

y = y1y2 . . . yk, k�1, with yi ∈ O,1� i �k,
(4) (s1 → s2, y′

1 → h(x), y′
2 → �, . . . , y′

k → �), for (s1, x/y, s2) ∈ R(0,1) and
y = y1y2 . . . yk, k�1, with yi ∈ O,1� i �k,

(5) (s → s′), for s ∈ K,
(s′ → s′, a′ → a), for s ∈ K, a ∈ O,
(s′ → s′′), for s ∈ K,

whereh is the morphism which replaces eacha ∈ O by a′.
In the presence of non-terminals fromK, we simulate the rules fromR(0,1); at anymoment

we can introduce a primed state, in the presence of which we transform eacha′ for a ∈ O

into the terminala; we end the derivation by replacing the primed state by a double primed
version of it, which is a terminal symbol forG.
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Now, consider the regular language

L = {s1′′z1yz2 | (s1, x/y, s2) ∈ R(0,1), s1, s2 ∈ K, x, y, z1, z2 ∈ O∗, y �= �}
∪ {s1′′z | (s1, x/�, s2) ∈ R(0,1), s1, s2 ∈ K, x, z ∈ O∗}.

This language contains all strings that describe configurations for which the computation
in � is not halting. Thus, the languageL′ = {s′′ | s ∈ K}O∗ −L contains all strings which
describe halting configurations. Therefore,L(G) ∩ L′ identifies all halting configurations
that were encoded in the strings ofL(G). Now consider the morphismg which erases
the symbolss′′, s ∈ K, as well as all symbols fromO − T ′. The equalityP s(�) =
�T ′(g(L(G) ∩ L′)) holds. As the family of matrix languages is closed under intersection
with regular languages and morphisms (clearly,L andL′ are regular), we obtainP s(�) ∈
PsMAT, and this completes the proof. �
By combining the previous three lemmas, we get the following characterizations of

PsMAT:

Theorem 5. PsMAT= PsOtp1(statek, antii) = PsOtp1(state∗, antij ) for all k�1 and
i �2 as well as for allj �1 (each ofk, i, j can also be equal to∗).

Obviously, one-cell systems with one state and antiport rules of weight 1 can only gen-
erate finite languages. However, if at least two cells are used, then even with antiport rules
of minimal weight we again get computational universality. The result is relevant both in
comparison with the previous theorem (thus specifying a sharp borderline between univer-
sality and non-universality), and if we compare it with the main result of[1], where the
universality (of cell-like P systemswith amaximal use of symport/antiport rules of minimal
weight) is obtained when using five membranes. In our case, two cells suffice, a fact which
proves the power of using states.

Theorem 6. PsRE= PsOtpm(state∗, antii) for all m�2 andi �1.

Proof. We only prove the inclusionPsRE⊆ PsOtp2(state∗, anti1). To this aim, let us
consider a register machineM = (n, R, l0, lh) (with lab(M) = {g1, . . . , gt }) generating
the set of vectorsN(M) ⊆ Nk, for somek�1, and construct the tissue-like P system (of
degree 2)

� = (O, T , K, �, w2, E, {(0,1), (1,2), (0,2)}, l0, s, s, R(0,1), R(1,2), R(0,2),1),

O = {ai | 1� i �n} ∪ {l, l′, l′′′, lv | l ∈ lab(M)},
T = {ai | 1� i �k},
K = {s, s′} ∪ {l, l′′, liv | l ∈ lab(M)},

w2 = g′
1g

′
2 . . . g′

t ,

E = O,

with the following sets of rules:
(1) For each ADD instructionl1 : (add(r), l2, l3) ofM, we introduce the rules

(l1, ar/�, l2) and(l1, ar/�, l3) in R(0,1).
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Clearly, the instructionof the registermachine is correctly simulatedby� (thecurrent
label of the synapse(0,1) is always related to the label of the current instruction from
the computation ofM).

(2) For each SUB instructionl1 : (sub(r), l2, l3) fromRwe introduce the rules indicated
in the table below in the sets of rules of�. The rules are given as used in the five steps
necessary in� to simulate this instruction.

Step R(0,1) R(1,2) R(0,2)

1 (l1, l1/�, l1
′′) Nothing Nothing

2 (l1
′′, l1′′′/�, liv1 ) (s, l1/�, l1) Nothing

3 (liv1 , lv1/l1′′′, liv1 ) (l1, ar/ l′2, s′) or (s, l′2/l1, s)

nothing
4 (liv1 , �/l′2, l2) or (s′, lv1/�, s) or Nothing

nothing (l1, lv1/l′3, s)

5 New instruction or Nothing (s, l′3/lv1, s)

(liv1 , �/l′3, l3)

Under the control of the labell1, we bring the objectl1 into the first cell (and the
state of the synapse(0,1) is changed tol1′′). In the second step, objectl1 is sent to the
second cell, thus changing the label of the synapse(1,2) to l1. Simultaneously,l1′′′ is
brought into the first cell (under the control of the labell1

′′ of the synapse(0,1), which
is changed toliv1 ). Now, we can start checking whether there is anyar in cell 1. If this is
the case, then the rule(l1, ar/ l′2, s′) must be used, and it sends a copy ofar to cell 2; if
no copy ofar is present, then no rule is applied on the synapse(1,2). Simultaneously,
l1 leaves cell 2 and in exchangel′2 is brought (back) from the environment, while on
the synapse(0,1) we use the rule(liv1 , lv1/l1′′′, liv1 ); its rôle is to bring the “checker”lv1
into the system, leaving to cell 1 the time to send a copy ofar to cell 2, provided that
such a copy exists.
In the next step,lv1 is sent to cell 2, nothing is used on the synapse(0,2), while on the

synapse(0,1) we have two possibilities. Ifar was available, hence,l′2 was brought into
cell 1, then this objects is sent to the environment and the label of the synapse(0,1)

becomesl2. In this way, we have completed the simulation of the SUB instruction for
the case when the subtraction was possible. If noar was available, then we do not
communicate between cell 1 and the environment.
However, the waylv1 passes from cell 1 to cell 2 depends on the label of the synapse

(1,2), which, in turn, depends on the fact whether or notar existed. Ifar was present,
then the label iss′, andlv1 just returns the label tos, making possible a new simulation;
otherwise, the label isl1, hence,lv1 is exchangedwithl

′
3 and the label is returned tos, too.

In either case, in the next step no rule can be used on the synapse(1,2), while lv1 is
sent from cell 2 to the environment, in exchange withl′3; in this way, alsol′3 is available
again for a possible use in a subsequent step. Ifar was not present, then in step 5 we
sendl′3 from cell 1 to the environment, and the label of the synapse(0,1) becomes
l3. This correctly completes the simulation of the SUB instruction for the case that the
subtraction was not possible.
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We should like to emphasize the important details that in cell 1 we only have copies
of the objectsaj for thosej representing non-zero registers inM, and that the contents
of cell 2 is restored, with objectsl′ present for alll ∈ lab(M) – with one further copy
of one of the objectsl′2, l′3 (during the simulation, we bring both of them from the
environment into cell 2, although only one of them then is sent to cell 1 in order to
change the label of the synapse(0,1)).

(3) No rule is introduced for labellh of synapse(0,1), hence, the work of� will stop
exactly when the work ofM stops.
From the explanations given above we conclude thatN(M) = P s(�). �

The previous proof uses a number of states which depend on the number of labels used
by the register machine simulated by our system. The number of states can even be reduced
to 1 at the expense of increasing the weight of rules by one.

Theorem 7. PsRE= PsOtpm(statek, antii) for all m�2, k�1,andi �2.

Proof. We again consider a register machineM = (n, R, l0, lh) (with lab(M) = {g1, . . . ,

gt }) generating the set of vectorsN(M) ⊆ Nk, for somek�1, and construct the tissue-like
P system (of degree 2)

� = (O, T , K, l0, w2, E, {(0,1), (1,2), (0,2)}, s, s, s, R(0,1), R(1,2), R(0,2),1),

O = {ai | 1� i �n} ∪ {l, l′, l′′, l′′′ | l ∈ lab(M)} ∪ {e},
T = {ai | 1� i �k},
K = {s},

w2 = eg1g2 . . . gt ,

E = O,

with the following sets of rules:
(1) For each ADD instructionl1 : (add(r), l2, l3) fromR, we introduce the rules

(s, l2ar/ l1, s) and(s, l3ar/ l1, s) in R(0,1).
(2) For each SUB instructionl1 : (sub(r), l2, l3) fromRwe introduce the rules indicated

in the table below in the sets of rules of�. The rules are given as used in the five steps
necessary in� to simulate this instruction. The states play no rôle in the computation,
the SUB instructions ofM are simulated by the antiport rules in a way rather similar to
that from[7], but using the rules in a sequential manner and making use of having two
cells (and the environment) for controlling the computation.
The labell1 is replaced byl′1, l1

′′ in the first cell. In the second step, if a copy ofar

is present, then the objectl′1 is sent to the second cell together with a copy ofar and
the auxiliary objecte is brought into cell 1; if no copy ofar exists, thenl′1 waits in
cell 1. Simultaneously,l1′′′ is brought into the first cell in exchange ofl1

′′. In the third
step,l1′′′ checks what happened in cell 1 in the previous step: if we here havee (i.e.,
ar was present), then the objectsl1′′′, e bring the labell2 from cell 2, thus completing
the simulation of the SUB instruction for the case when the subtraction was possible.
If we still havel′1 in cell 1, then the objectsl1′′′, l′1 bring l3 from cell 2, thus completing
the simulation of the instruction for the case when the subtraction was not possible.
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In cell 2, we exchangel′1 with l2 (which is brought in from the environment), either
in step 3 (in the case whenar was present), or in one of steps 4 and 5; in the latter case,
the rule(s, l2/l′1, s) is used in alternate steps with the rule(s, l3/l1′′′, s), which brings
the labell3 into the system. In this way, the contents of cell 2 is restored, hence, we can
continue simulating the instructions ofM.

Step R(0,1) R(1,2) R(0,2)

1 (s, l′1l1′′/l1, s) Nothing Nothing
2 (s, l1′′′/l1

′′, s) (s, l′1ar/e, s) Nothing
3 Nothing (s, l1′′′e/l2, s) or (s, l2/l′1, s)

(s, l1′′′l′1/l3, s)

4 New instruction Nothing (s, l3/l1′′′, s) or
(s, l2/l′1, s)

5 New instruction New instruction (s, l2/l′1, s) or
(s, l3/l1′′′, s)

(3) We also introduce the rule
(s, �/lh, s) in R(0,1),

hence, the work of� will stop exactly when the work ofM stops (and with the copies
of the objectsai, 1� i �k, in cell 1 representing the result of the computation).
From the explanations given above we infer thatN(M) = P s(�). �

The previous result shows that when rules of weight at least two are available, the hierar-
chies on the number of cells and states simultaneously collapse at level two and level one,
respectively.
For antiport rules of minimal weight such a strong result is not known, although we can

again bound the number of states (the hierarchy now collapses at level three), yet only
provided that the number of cells can be arbitrary.

Theorem 8. PsRE= PsOtp∗(statek, antii) for all k�3 andi �1.

Proof. Consider a register machineM = (n, R, l0, lh), with uADD instructions,v SUB
instructions, and generatingN(M) ⊆ Nk, for somek�1.
Then we construct the tissue-like P system with channel states

� = (O, T , K, w1, . . . , E, syn, s, . . . , s, R(0,1), . . . ,1),

of degree 1+ u + 2v, with the cells labelled by 1, add1, . . . , addu, sub1, sub′
1, . . . , subv,

sub′
v, with the initial state of all synapses beings and the output cell being that one with

label 1, as well as

O = {ai | 1� i �n} ∪ lab(M) ∪ {e,#},
T = {ai | 1� i �k},
K = {s, s′, s′′},

w1 = l0,

waddi
= #, for all 1� i �u,
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wsubi
= #, for all 1� i �v,

wsub′
i
= e, for all 1� i �v,

E = O,

syn = {(0,1)}
∪ {(1, addi), (0, addi) | 1� i �u}
∪ {(1, subi), (subi, sub′

i ), (0, subi) | 1� i �v}
and with the sets of rules associated with the synapses as follows:

R(0,1) = {(s,#/#, s), (s, �/lh, s)},
R(1,addi ) = {(s, l1/�, s′), (s′, �/ar , s′′), (s′′, �/l2, s), (s′′, �/l3, s),

(s′, �/#, s), (s′′, �/#, s)},
R(0,addi ) = {(s, ar/�, s), (s, l2/�, s), (s, l3/�, s),

(s, e/�, s′)}, for all i ∈ {1,2, . . . , u},
with the ith ADD rule being l1 : (add(r), l2),

R(1,subi ) = {(s, l1/�, s′), (s′, ar/�, s′′), (s′′, �/l2, s),

(s′′, �/#, s), (s′, �/l3, s)},
R(subi ,sub′

i )
= {(s, l2/e, s′), (s′, e/�, s), (s, l3/�, s)},

R(0,subi ) = {(s, l2/l1, s′), (s′, l3/�, s)}, for all i ∈ {1,2, . . . , v},
with the ith SUB rule beingl1 : (sub(r), l2, l3).

The structure of the system�, in the initial configuration, together with the sets of rules
associated with the typical synapses, is pictorially indicated in Fig.2. With the copies of
the objectsai, 1� i �n, we simulate the work of the register machineM; at the end of a
halting computation, the copies of the objectsai, 1� i �k, in cell 1 represent the result of
the computation.
The simulation ofADD instructions ofM is donewith the help of the cellsaddi ,1� i �u.

Specifically, for each instructionaddi of the forml1 : (add(r), l2, l3)weproceedas follows.
First,l1 passes to celladdi and the state of the synapse(1, addi) is changed tos′. Thismakes
possible the passage ofar from celladdi to cell 1; because the state of the synapse becomes
s′′, in the next step we can also bringl2 or l3 into cell 1, returning the state of the synapse to
s. The objectsar , l2, l3must be available in celladdi at the rightmoment, because otherwise
the trap symbol # is brought from celladdi to cell 1, and then the computation never stops
(the rule(s,#/#, s) will be used forever on the synapse(0,1)). The objectsar , l2, l3 are
brought to celladdi from the environment in the presence of statesof synapse(0, addi); in
order to stop bringing objects into celladdi , we change the state of this synapse froms to s′,
when bringing inside the auxiliary objecte. Therefore, the instructionl1 : (add(r), l2, l3)

is correctly simulated (the states of the used synapses have returned to the initials, hence,
we can simulate other instructions).
The SUB instructionsubi , of the form l1 : (sub(r), l2, l3), is simulated through the

interaction of cell 1 with the cellssubi andsub′
i , in the following way. First, the objectl1 is

sent from cell 1 to cellsubi , and the state of the synapse(1, subi) is changed tos′. In the
next step,l1 exits cellsubi , being exchanged withl2, and the state of the synapse(0, subi)
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Fig. 2. The structure of the system from the proof of Theorem8.

becomess′. Simultaneously, if any copy ofar is present in cell 1, then the rule(s′, ar/�, s′′)
is used, hence, one copy ofar leaves cell 1 and the state of the synapse(1, subi) becomes
s′′. If no copy ofar exists in cell 1, then the state of the synapse remainss′ and no rule is
used here. In the third step, if the state of the synapse(1, subi) is s′′, thenl2 passes from cell
subi to cell 1, returning the state of this synapse tos (and making possible the simulation
of another rule). At the same time,l3 enters cellsubi , returning the state of the synapse
(0, subi) to s. Instead of passing to cell 1, the objectl2 can also pass to cellsub′

i , but in
this case the trap symbol will be sent to cell 1, by means of the rule(s′′, �/#, s), and the
computation will never stop. If the simulation of the case whenar exists is correct, i.e.,
l2 enters cell 1, thenl3 will pass to cellsub′

i in the next step (as the state of the synapse
(subi, sub′

i ) has remaineds, the rule(s, l3/�, s) ∈ R(subi ,sub′
i )
can be used). If no copy of

ar is present in cell 1, then, after passingl1 to cell subi and exchanging it withl2 from the
environment,l2 must pass to cellsub′

i , in exchange withe, replacing states by s′ on the
synapse(subi, sub′

i ). At the same time,l3 enters cellsubi . In the next step,l3 cannot go to
cell sub′

i , because of the states′ of the synapse(subi, sub′
i ), hence, it has to go to cell 1 by

means of the rule(s′, �/l3, s) (the state of this synapse has remaineds′, because noar has
changeds′ into s′′ as above). At the same time, the auxiliary objectepasses back from cell
subi to cell sub′

i , returning the state of this synapse tos.
The simulation of the SUB instruction now is complete, the states of the synapses are

agains, hence, the simulation of instructions ofM can continue.
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In the whole simulation process, it is essential that in eachADD instructionl1 : (add(r),

l2, l3) and in each SUB instructionl1 : (sub(r), l2, l3) the labelsl1, l2, l3 are mutually
different.
When the halt labellh is introduced in cell 1, it exits by means of the rule(s, �/lh, s) and

the computation stops. We conclude thatN(M) = P s(�) and this ends the proof. �

4. Further variants

The previous systemswork in the generativemode, using the rules in a sequentialmanner.
Obvious variations are obtained by considering the accepting mode. A possibility is to
designate a cell as the input one, and to start the computation by introducing a multiset in
that cell; this multiset is accepted if and only if the computation halts.
Another possibility is to consider as accepted the sequence of objects taken from the

environment duringahalting computation (as in[2,4,13]) and in thiswayweobtain language
recognizing devices. The example from Section 2 works in a way for which this mode to
define the recognized language is apparent—the language recognized by�1 is non-regular.
Then, of interest is to consider a parallel use of rules. In order to avoid conflicts in

changing the labels, in each step, on each synapse, all rules leading from a states to the
same states′ should be considered. More specifically, “tables” of the formTi,j (s, s′) =
{(s, x/y, s′) | (s, x/y, s′) ∈ R(i,j)} can be defined, for each synapse(i, j) and for each pair
(s, s′) of states; in each step one table is non-deterministically chosen and then used in a
maximally parallel manner.
All these possibilities remain to be investigated. In general, we believe that the tissue-

like P systems (with channel states) deserve further research efforts, motivated both by the
mathematical problems they raise and also by the interesting connections with inter-cell
communication in tissues (an important biological fact, see, e.g.,[9]), neuron interaction in
the brain, distributed computing (internet included).
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